Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566081

RESUMO

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Assuntos
Metformina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Astrócitos/metabolismo , Neurônios Dopaminérgicos , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
2.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
3.
J Hazard Mater ; 469: 133897, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442599

RESUMO

Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.


Assuntos
Bacillus , Oryza , Poluentes do Solo , Ferro , Antimônio/toxicidade , Raízes de Plantas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Bactérias , Oxirredução , Compostos Ferrosos
4.
Int J Biol Macromol ; 258(Pt 2): 129089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161017

RESUMO

Selenium nanoparticles (SeNPs) have gained significant attention owing to their favorable bioavailability and low toxicity, making them widely applications in the fields of medicine, food and agriculture. In this study, bacterial extracellular polymeric substances (EPS) were used as a novel stabilizer and capping agent to prepare dispersed SeNPs. Results show that EPS-SeNPs presented negative potential (-38 mV), spherical morphologies with average particle size about 100-200 nm and kept stable at room temperature for a long time. X-ray diffraction (XRD) analysis demonstrated that the synthesized nanoparticles were pure amorphous nanoparticles, and X-ray photoelectron spectroscopy (XPS) spectrum showed a spike at 55.6 eV, indicating the presence of zero-valent nano­selenium. Fourier-transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy analysis confirmed proteins and polysaccharides in EPS played a crucial role in the synthesis of EPS-SeNPs. Compared to EPS or sodium selenite (Na2SeO3), EPS-SeNPs showed a relatively moderate result in terms of scavenging free radicals in vitro. In contrast, EPS-SeNPs demonstrated lower toxicity to rice seeds than Na2SeO3. Notably, the exogenous application of EPS-SeNPs effectively alleviated the growth inhibition and oxidative damaged caused by cadmium (Cd), and significantly reduced Cd accumulation in rice plants.


Assuntos
Nanopartículas , Oryza , Selênio , Selênio/química , Cádmio , Matriz Extracelular de Substâncias Poliméricas , Polissacarídeos , Nanopartículas/química
5.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 102-105, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158681

RESUMO

The objective of this study was to analyze the effect of curcumin (Cur) on pulmonary fibrosis (PF), so as to provide new clinical evidence for future PF treatment. To achieve these goals, the researchers set up bought human lung fibroblasts MRC-5 as a control group without treatment, a model group for PF cell modeling, and an intervention group for Cur intervention after PF modeling. Cell proliferation capacity and cellular TGF-ß1, α-SMA, Collagen I, Collagen III, Bax, N-cadherin and E-cadherin protein expression were determined. The results show that markedly enhanced cell proliferation capacity and TGF-ß1, α-SMA, Collagen I and Collagen III protein levels were observed in the model group, while the cell activity and fibrosis degree in the intervention group were significantly decreased compared with the model group (P<0.05). In addition, the intervention group exhibited lower N-cadherin and Bax with higher E-cadherin than the model group (P<0.05). In addition, the team found that the inflammatory response and oxidative stress were also more significantly improved in the intervention group (P<0.05). These experimental results tell us that Cur can ameliorate the fibrotic process of PF by inhibiting the activity of MRC-5.


Assuntos
Curcumina , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fibrose , Pulmão/patologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo I/uso terapêutico , Caderinas/metabolismo
6.
BMC Pharmacol Toxicol ; 24(1): 46, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740245

RESUMO

OBJECTIVES: Our previous clinical trial showed that etomidate requirements to reach an appropriate level of anesthesia in patients with obstructive jaundice were reduced, which means that these patients are more sensitive to etomidate. However, the mechanism is still not completely clear. The present study was aimed to investigate the mechanism by which bilirubin facilitates etomidate induced sedation. METHODS: A bile duct ligation (BDL) rat model was used to simulate obstructive jaundice. Anesthesia sensitivity to etomidate was determined by the time to loss of righting reflex (LORR). Intrathecal injection of bilirubin was used to test the effects of bilirubin on etomidate induced sedation. The modulating effects of bilirubin on GABA responses were studied using the whole-cell patch clamp technique. RESULTS: The time to LORR induced by etomidate was significantly decreased in the BDL groups (p < 0.05), and unconjugated bilirubin in serum and cerebrospinal fluid (CSF) were markedly increased (p < 0.05). The time to LORR induced by etomidate was decreased after intrathecal injection of bilirubin (p < 0.05). A bilirubin concentration of 1.0 µM increased the GABA-induced currents of rat cortical pyramidal neurons (p < 0.05). Furthermore, 1.0 µM bilirubin enhanced GABA-induced currents modulated by etomidate (p < 0.05). CONCLUSIONS: Our results demonstrated that pathologic bilirubin in CSF could enhance etomidate induced sedation. The mechanism may be that bilirubin increase the GABA-induced currents of rat pyramidal neurons.


Assuntos
Anestesia , Etomidato , Icterícia Obstrutiva , Humanos , Animais , Ratos , Etomidato/farmacologia , Ductos Biliares , Bilirrubina , Ácido gama-Aminobutírico/farmacologia
7.
Front Immunol ; 14: 1168308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520533

RESUMO

Introduction: To control the COVID-19 pandemic, great efforts have been made to realize herd immunity by vaccination since 2020. Unfortunately, most of the vaccines against COVID-19 were approved in emergency without a full-cycle and comprehensive evaluation process as recommended to the previous vaccines. Metabolome has a close tie with the phenotype and can sensitively reflect the responses to stimuli, rendering metabolomic analysis have the potential to appraise and monitor vaccine effects authentically. Methods: In this study, a retrospective study was carried out for 330 Chinese volunteers receiving recommended two-dose CoronaVac, a vaccine approved in emergency in 2020. Venous blood was sampled before and after vaccination at 5 separate time points for all the recipients. Routine clinical laboratory analysis, metabolomic and lipidomic analysis data were collected. Results and discussion: It was found that the serum antibody-positive rate of this population was around 81.82%. Most of the laboratory parameters were slightly perturbated within the relevant reference intervals after vaccination. The metabolomic and lipidomic analyses showed that the metabolic shift after inoculation was mainly in the glycolysis, tricarboxylic acid cycle, amino acid metabolism, urea cycle, as well as microbe-related metabolism (bile acid metabolism, tryptophan metabolism and phenylalanine metabolism). Time-course metabolome changes were found in parallel with the progress of immunity establishment and peripheral immune cell counting fluctuation, proving metabolomics analysis was an applicable solution to evaluate immune effects complementary to traditional antibody detection. Taurocholic acid, lysophosphatidylcholine 16:0 sn-1, glutamic acid, and phenylalanine were defined as valuable metabolite markers to indicate the establishment of immunity after vaccination. Integrated with the traditional laboratory analysis, this study provided a feasible metabolomics-based solution to relatively comprehensively evaluate vaccines approved under emergency.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Estudos Retrospectivos , Pandemias , COVID-19/prevenção & controle , Metabolômica
8.
Front Oncol ; 13: 1134149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064084

RESUMO

Introduction: Retinoic acid-induced 2 (RAI2) was initially related to cell differentiation and induced by retinoic acid. RAI2 has been identified as an emerging tumor suppressor in breast cancer and colorectal cancer. Methods: In this study, we performed systematic analyses of RAI2 in breast cancer. Meta-analysis and Kaplan-Meier survival curves were applied to identify the survival prediction potential of RAI2. Moreover, the association between RAI2 expression and the abundance of six tumor-infiltrating immune cells was investigated by TIMER, including B cells, CD8+ T cells, CD4+ T cells, B cells, dendritic cells, neutrophils, and macrophages. The expression profiles of high and low RAI2 mRNA levels in GSE7390 were compared to identify differentially expressed genes (DEGs) and the biological function of these DEGs was analyzed by R software, which was further proved in GSE7390. Results: Our results showed that the normal tissues had more RAI2 expression than breast cancer tissues. Patients with high RAI2 expression were related to a favorable prognosis and more immune infiltrates. A total of 209 DEGs and 182 DEGs were identified between the expression profiles of high and low RAI2 mRNA levels in the GSE7390 and GSE21653 databases, respectively. Furthermore, Gene Ontology (GO) enrichment indicated that these DEGs from two datasets were both mainly distributed in "biological processes" (BP), including "organelle fission" and "nuclear division". Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis demonstrated that these DEGs from two datasets were both significantly enriched in the "cell cycle". Common hub genes between the DEGs in GSE7390 and GSE21653 were negatively associated with RAI2 expression, including CCNA2, MAD2L1, MELK, CDC20, and CCNB2. Discussions: These results above suggested that RAI2 might play a pivotal role in preventing the initiation and progression of breast cancer. The present study may contribute to understanding the molecular mechanisms of RAI2 and enriching biomarkers to predict patient prognosis in breast cancer.

9.
J Environ Manage ; 330: 117178, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621315

RESUMO

Soil nitrification driven by ammonia-oxidizing microorganisms is the most important source of nitrous oxide (N2O) and nitric oxide (NO). Biochar amendment has been proposed as the most promising measure for combating climate warming; both have the potential to regulate the soil nitrification process. However, the comprehensive impacts of different aged biochars and warming combinations on soil nitrification-related N2O and NO production are not well understood. Here, 1-octyne and acetylene were used to investigate the relative contributions of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to potential nitrification-mediated N2O and NO production from the fertilized vegetable soil with different aged biochar amendments and soil temperatures in microcosm incubations. Results demonstrated that AOB dominated nitrification-related N2O and NO production across biochar additions and climate warming. Biochar amendment did not significantly influence the relative contribution of AOB and AOA to N2O and NO production. Field-aged biochar markedly reduced N2O and NO production via inhibiting AOB-amoA gene abundance and AOB-dependent N2O yield while fresh- and lab-aged biochar produced negligible effects on AOB-dependent N2O yield. Climate warming significantly increased N2O production and AOB-dependent N2O yield but less so on NO production. Notably, the relative contribution of AOB to N2O production was enhanced by climate warming, whereas AOB-derived NO showed the opposite tendency. Overall, the results revealed that field-aged biochar contributed to mitigating warming-induced increases in N2O and NO production via inhibiting AOB-amoA gene abundance and AOB-dependent N2O yield. Our findings provided guidance for mitigating nitrogen oxide emissions in intensively managed vegetable production under the context of biochar amendments and climate warming.


Assuntos
Óxido Nítrico , Verduras , Nitrificação , Amônia , Microbiologia do Solo , Archaea , Óxido Nitroso/análise , Solo , Oxirredução
10.
Microbiol Spectr ; 11(1): e0209622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475917

RESUMO

Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common nod region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single nodD isoform (nodD1) and a truncated nolA were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility. Here, we report that nolA was important for CCBAU53363 symbiosis with peanut but restricted nodulation on mung bean, while nodD1 was dispensable for CCBAU53363 symbiosis with peanut but essential for nodulation on mung bean. Moreover, nolA exerted a cumulative contribution with nodD1 to efficient symbiosis with peanut. Additionally, mutants lacking nolA delayed nodulation on peanut, and both nolA and nodD1 were required for competitive nodule colonization. It is noteworth that most of the nodulation genes and type III secretion system (T3SS)-related genes were significantly downregulated in a strain 53ΔnodD1nolA mutant compared to wild-type strain CCBAU53363, and the downregulated nodulation genes also had a greater impact than T3SS-related genes on the symbiotic defect of 53ΔnodD1nolA on peanut, which was supported by a more severe symbiotic defect induced by 53ΔnodC than that with the 53ΔnodD1nopP, 53ΔnodD1rhcJ, and 53ΔnodD1ttsI mutants. NolA did not regulate nod gene expression but did regulate the T3SS effector gene nopP in an indirect way. Meanwhile, nolA, nodW, and some T3SS-related genes besides nopP were also demonstrated as new "repressors" that seriously impaired CCBAU53363 symbiosis with mung bean. Taken together, the roles and essentiality of nolA and nodD1 in modulating symbiotic compatibility are sophisticated and host dependent. IMPORTANCE The main findings of this study were that we clarified that the roles and essentiality of nodD1 and nolA are host dependent. Importantly, for the first time, NolA was found to positively regulate T3SS effector gene nopP to mediate incompatibility on mung bean. Additionally, NolA does not regulate nod genes, which are activated by NodD1. nolA exerts a cumulative effect with nodD1 on CCBAU53363 symbiosis with peanut. These findings shed new light on our understanding of coordinated regulation of NodD1 and NolA in peanut bradyrhizobia with different hosts.


Assuntos
Fabaceae , Vigna , Arachis/metabolismo , Simbiose , Proteínas de Bactérias/genética
11.
Biomed Pharmacother ; 156: 113959, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411663

RESUMO

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) bring significant benefits to non-small cell lung cancer patients with EGFR mutations, which represent a breakthrough in lung cancer therapy. However, patients will ultimately develop the acquired resistance to the first- or second-generation EGFR-TKIs after a period of treatment, and EGFR T790M mutation is the most common resistant mechanism. The third-generation EGFR-TKIs target T790M mutation and show potent anti-tumor efficacy, especially in central neural system response. Unfortunately, patients inevitably get resistant to the third-generation EGFR-TKIs due to various mechanisms, which can be mainly divided into EGFR-dependent and -independent ones. EGFR-dependent mechanism refers to manifold EGFR mutations while EGFR-independent mechanisms include bypass signal activation, histologic transformation and so on. To precisely address this issue and improve clinical outcomes, various other therapies (e.g. chemotherapy, radiotherapy, etc.) in combination with the third-generation EGFR-TKIs are designed. However, the current results of combination therapies are insufficient and ambiguous, which remain further exploration. Herein, we provide an updated landscape of the third-generation EGFR-TKIs and elaborate on the complex resistant mechanisms. Notably, we summarize the combination therapies with third-generation EGFR-TKIs and discuss their limitations and future perspective, aiming at providing insights to clinicians from bench to bedside.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Microbiol Res ; 265: 127188, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152611

RESUMO

Type I peanut bradyrhizobial strains can establish efficient symbiosis in contrast to symbiotic incompatibility induced by type II strains with mung bean. The notable distinction in the two kinds of key symbiosis-related regulators nolA and nodD close to the nodABCSUIJ operon region between these two types of peanut bradyrhizobia was found. Therefore, we determined whether NolA and NodD proteins regulate the symbiotic adaptations of type I strains to different hosts. We found that NodD1-NolA synergistically regulated the symbiosis between the type I strain Bradyrhizobium zhanjiangense CCBAU51778 and mung bean, and NodD1-NodD2 jointly regulated nodulation ability. In contrast, NodD1-NolA coordinately regulated nodulation ability in the CCBAU51778-peanut symbiosis. Meanwhile, NodD1 and NolA collectively contributes to competitive nodule colonization of CCBAU51778 on both hosts. The Fucosylated Nod factors and intact type 3 secretion system (T3SS), rather than extra nodD2 and full-length nolA, were critical for effective symbiosis with mung bean. Unexpectedly, T3SS-related genes were activated by NodD2 but not NodD1. Compared to NodD1 and NodD2, NolA predominantly inhibits exopolysaccharide production by promoting exoR expression. Importantly, this is the first report that NolA regulates rhizobial T3SS-related genes. The coordinated regulation and integration of different gene networks to fine-tune the expression of symbiosis-related genes and other accessory genes by NodD1-NolA might be required for CCBAU51778 to efficiently nodulate peanut. This study shed new light on our understanding of the regulatory roles of NolA and NodD proteins in symbiotic adaptation, highlighting the sophisticated gene networks dominated by NodD1-NolA.


Assuntos
Bradyrhizobium , Fabaceae , Arachis/genética , Arachis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Simbiose/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
13.
Front Pharmacol ; 13: 940463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003517

RESUMO

Background: Chronic stress-induced diarrhea is a common clinical condition, characterized by an abnormal bowel movement and loose stools, which lacks effective treatment in the clinic. Si-Ni-San (SNS) is a compound traditional Chinese medicine extensively used in China for stress-related diarrhea. However, the mechanism is unclear. Methods: Male Wistar rats (200 ± 20 g) were placed in a restraint cylinder and fixed horizontally for 3 h once daily for 21 consecutive days to establish a chronic restraint stress (CRS) rat model. SNS (0.6944 g/kg or 1.3888 g/kg) was given by gavage 1 h before the restraint once daily for 21 consecutive days. We examined the fecal score, dopamine ß hydroxylase (DßH), and c-fos expression in locus coeruleus, norepinephrine (NE) content in ileum and plasma, expression of α1 adrenergic receptors, MLCK, MLC, and p-MLC in the colon and mesenteric arteries, contraction of isolated mesenteric arteries, The expression of subunit δ of ATP synthase (ATP5D) in intestinal tissues, ATP, ADP, and AMP content in the ileum and colon, occludin expression between ileum epithelial cells, the number of enterochromaffin cells (ECs) and mast cells (MCs) in the ileum, and 5-hydroxytryptamine (5-HT) content in the ileum and plasma. Results: After SNS treatment, the fecal score was improved. The increased expression of DßH and c-fos in locus coeruleus was inhibited. SNS suppressed the increased NE content in the ileum and plasma, down-regulated α1 adrenergic receptors in mesenteric arteries and MLCK, MLC, p-MLC in the colon and mesenteric arteries, and inhibited the contraction of mesenteric arteries. SNS also increased the ATP content in the ileum and colon, inhibited low expression of ATP5D in intestinal tissues, inhibited the decrease of ATP/ADP in the ileum and ATP/AMP in the colon, and up-regulated the occludin expression between ileum epithelial cells. In addition, SNS inhibited the increase of ECs and MCs in the ileum and the increase of 5-HT content in the ileum and plasma. Conclusion: This study demonstrated that SNS could improve CRS-induced abnormal feces in rats. This effect was related to the inhibition of CRS-induced increased expression of DßH and c-fos in the locus coeruleus, NE content in the ileum and plasma, and the contraction of isolated mesenteric arteries; inhibition of energy metabolism abnormality and decreased occludin expression; inhibition of increased ECs and MCs in the ileum, and 5-HT content in the ileum and plasma.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35966754

RESUMO

Background: Back muscle injury is the most common illness involved in aged people. Muscular satellite cells, playing a key role in the muscle repairing process, are gradually losing their regenerative ability with aging, which attenuates the injured muscle repairing process. Electroacupuncture at Weizhong acupoint has been widely used in the treatment of young and aged patients with back muscle damage. Its efficacy has been proven by a randomized double-blind placebo clinical trial. However, the rehabilitation mechanisms are largely unknown. This study will explore the possible mechanisms associated with electroacupuncture at the Weizhong acupoint (BL 40) promoting muscle repairing ability. Method: A total of 58 male and female Sprague-Dawley rats were divided into a younger group (4-month-old) and an aged group (16-month-old), younger and aged rats were further divided as a sham, injured, injured rats treated with electroacupuncture at Weizhong point or treated with Non-Weizhong point groups. The back muscle injury model was produced in rats as a previously described method with modification. Furthermore, Weizhong acupoints underwent electroacupuncture treatment with 15 V magnitude, 2 Hz/10 Hz frequency density, 1.0 mA current intensity, and 10 min each day for 10 consecutive days using HANS's electroacupuncture apparatus. After the last treatment, the paravertebral muscles and serum of all animals were undergone histological, immunohistochemistry, and flow cytometry analysis. Serum levels of Creatine Kinase (CK) and proinflammatory cytokine, interleukin 6 (IL-6), were measured separately by using ELISA kit. Results: Electroacupuncture of Weizhong (BL 40) acupoints significantly attenuated back muscle damage in both young and aged rats, increasing PAX7 (a marker of muscle satellite cells) and MYOD (major marker of myoblasts) cells, simultaneously, reducing serum proinflammatory cytokines, IL-6, and downregulation of p38 MAPK signaling in aged muscular satellite cells. Conclusion: Our studies suggest that electroacupuncture of Weizhong (BL 40) acupoints can restore aged back muscular satellite cells and their regeneration capacity. These suggested electroacupuncture may be a potential means of promoting rehabilitation for muscular injury in aged patients.

15.
Phytochemistry ; 203: 113395, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36027969

RESUMO

Developing highly effective HIV latency-reversing agent is an inportmant approach for the treatment of AIDS via the "shock and kill" of latent HIV. In this study, two unreported modified daphnane-type diterpenes (chamaedaphnelide A and epi-chamaedaphnelide A) and one unreported tigliane-type diterpene (chamaedaphnelide B), along with four known daphnane-type diterpenes and one known tigliane-type diterpene were obtained from the leaves of Wikstroemia chamaedaphne. Chamaedaphnelide A and epi-chamaedaphnelide A represents the first A ring cleavage daphnane-type backbone. Chamaedaphnelide A, epi-chamaedaphnelide A, chamaedaphnelide B, and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate showed HIV latency-reversing activity, especially chamaedaphnelide B and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate displayed equally potential to positive drugs prostratin with reversing latent HIV on more than 100-fold compared to unstimulated cells. Furthermore, the activation of STAT1 was involved in the HIV latency-reversing activity of these diterpenes, firstly demonstrating that daphnane- and tigliane-type diterpenes can rapidly activate STAT1 activity. Indeed, these results also supported that activating STAT1 activity is a pathway for reversing latent HIV.


Assuntos
Fármacos Anti-HIV , Diterpenos , HIV , Latência Viral , Fármacos Anti-HIV/farmacologia , Diterpenos/farmacologia , HIV/efeitos dos fármacos , HIV/fisiologia , Infecções por HIV/tratamento farmacológico , Humanos , Folhas de Planta , Fator de Transcrição STAT1/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Latência Viral/efeitos dos fármacos , Wikstroemia
16.
Front Immunol ; 13: 929846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990656

RESUMO

Breast cancer has overtaken lung cancer as the most frequently diagnosed cancer type and is the leading cause of death for women worldwide. It has been demonstrated in published studies that long non-coding RNAs (lncRNAs) involved in genomic stability are closely associated with the progression of breast cancer, and remarkably, genomic stability has been shown to predict the response to immune checkpoint inhibitors (ICIs) in cancer therapy, especially colorectal cancer. Therefore, it is of interest to explore somatic mutator-derived lncRNAs in predicting the prognosis and ICI efficacy in breast cancer patients. In this study, the lncRNA expression data and somatic mutation data of breast cancer patients from The Cancer Genome Atlas (TCGA) were downloaded and analyzed thoroughly. Univariate and multivariate Cox proportional hazards analyses were used to generate the genomic instability-related lncRNAs in a training set, which was subsequently used to analyze a testing set and combination of the two sets. The qRT-PCR was conducted in both normal mammary and breast cancer cell lines. Furthermore, the Kaplan-Meier and receiver operating characteristic (ROC) curves were applied to validate the predictive effect in the three sets. Finally, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to evaluate the association between genomic instability-related lncRNAs and immune checkpoints. As a result, a six-genomic instability-related lncRNA signature (U62317.4, MAPT-AS1, AC115837.2, EGOT, SEMA3B-AS1, and HOTAIR) was identified as the independent prognostic risk model for breast cancer patients. Compared with the normal mammary cells, the qRT-PCR showed that HOTAIR was upregulated while MAPT-AS1, EGOT, and SEMA3B-AS1 were downregulated in breast cancer cells. The areas under the ROC curves at 3 and 5 years were 0.711 and 0.723, respectively. Moreover, the patients classified in the high-risk group by the prognostic model had abundant negative immune checkpoint molecules. In summary, this study suggested that the prognostic model comprising six genomic instability-related lncRNAs may provide survival prediction. It is necessary to identify patients who are suitable for ICIs to avoid severe immune-related adverse effects, especially autoimmune diseases. This model may predict the ICI efficacy, facilitating the identification of patients who may benefit from ICIs.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Inibidores de Checkpoint Imunológico , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
J Glob Antimicrob Resist ; 30: 1-9, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643393

RESUMO

OBJECTIVES: This network meta-analysis aimed to compare the efficacy and safety of fluoroquinolone (FQ) monotherapy, ß-lactam (BL) monotherapy and ß-lactam/macrolide (BL-M) combination therapy in hospitalized patients with community-acquired pneumonia (CAP). METHODS: Pubmed, Embase and the Cochrane Library were searched for randomized controlled trials (RCTs) comparing FQ monotherapy, BL monotherapy and BL-M combination therapy up to July 2021. The outcomes of interest included all-cause mortality, clinical success, microbiological success and drug-related adverse events. The summary relative risks (RRs) were estimated using pairwise and Bayesian network meta-analysis. RESULTS: A total of 12 RCTs involving 5009 patients were included. In pairwise meta-analysis, no significant differences were found among FQ monotherapy, BL monotherapy and BL-M dual therapy for all-cause mortality, clinical success or microbiological success. FQ monotherapy was associated with fewer adverse events compared with BL-M therapy (RR 0.80, 95% confidence interval [CI] 0.66-0.98). The network meta-analysis showed that there was no significant difference observed among FQ monotherapy, BL monotherapy and BL-M dual therapy regarding all the outcomes. CONCLUSION: FQ monotherapy, BL monotherapy and BL-M combination therapy demonstrated similar efficacy and safety for hospitalized patients with CAP in this network meta-analysis. Due to the limitations of quality and quantity of the included studies, it is difficult to make a definitive recommendation before more large-scale and high-quality RCTs are conducted.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Antibacterianos/efeitos adversos , Infecções Comunitárias Adquiridas/microbiologia , Quimioterapia Combinada , Fluoroquinolonas/efeitos adversos , Humanos , Metanálise em Rede , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , beta-Lactamas/efeitos adversos
18.
Emerg Med Int ; 2022: 3112281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721255

RESUMO

Objective: To detect EGFR/KRAS genes in pleural effusion cell-free DNA in patients with advanced non-small-cell lung cancer (NSCLC) and to explore the clinical significance of EGFR/KRAS mutation status in pleural effusion. Methods: A retrospective collection was performed on the specimens of pleural effusion and matched tissues from 50 patients with advanced NSCLC admitted to the hospital between January 2019 and January 2021. DNA mutation status of EGFR/KRAS in different specimens was detected and compared by pyrosequencing. The clinicopathological data and follow-up data of survival were collected. The relationship between DNA mutation and clinicopathological characteristics and prognosis was analyzed. Results: In the 50 pleural effusion specimens, there were 22 cases (44.00%) with EGFR mutations (19/21 exon mutations), including 12 cases with EGFR19 deletion mutation and 10 cases with EGFR21 exon L858R mutation. There were 6 cases (12.00%) with KRAS mutations (single-base substitution mutations), including 4 cases with 12-codon mutation and 2 cases with 13-codon mutation. In the 50 tissue specimens, there were 24 cases (48.00%) with EGFR mutations and 4 cases (8.00%) with KRAS mutations. There was no significant difference between pleural effusion specimens and tissue specimens, with good consistency (kappa = 0.920-0.779, P > 0.05). EGFR mutation in pleural effusion was related to smoking history, types of pathological tissues, and lymph node metastasis (P < 0.05). The incidence of EGFR mutation was higher in nonsmokers, patients with lung adenocarcinoma, and patients with lymph node metastasis. The carcinoembryonic antigen (CEA) in patients with EGFR mutation was higher than that with wild-type EGFR, while the level of cytokeratin 19 fragment (Cy21-1) was lower than that with wild-type EGFR (P < 0.05). The 1-year overall survival rate in the EGFR mutation group was significantly higher than that in the EGFR wild group (68.18% vs. 42.86%) (HR = 0.419, 95% CI = 0.178-0.989, and P < 0.001). Conclusion: For the detection of EGFR gene mutation, the results of the pleural effusion specimens and the tumor pathological tissue specimens were well consistent and the detection of pleural effusion could be used as an alternative method when tissue specimens cannot be obtained. EGFR gene mutations are present in majority in patients with advanced NSCLC. The incidence of EGFR mutation is higher in nonsmokers, patients with lung adenocarcinoma, those with lymph node metastasis, those with high-expression CEA, and those with low-expression Cy21-1. The prognosis is better in patients with EGFR mutation.

20.
Org Lett ; 24(1): 289-292, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34923826

RESUMO

1,4-Dicarbonyl compounds are versatile scaffolds for the heterocycle synthesis, including the Paal-Knorr reaction. Herein, a feasible electrosynthesis method to access 1,4-dicarbonyl compounds has been developed from simple alkynes and 1,3-dicarbonyl compounds. When the undivided cell is combined with the constant current mode, aryl alkynes containing numerous medicinal motifs with 1,3-dicarbonyl esters or ketones react smoothly. External oxidant and catalyst-free conditions conform to the requirements of green synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...